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Lecture 33 

At the beginning of the semester I stated that we can describe the realms of kinetics and 

thermodynamics by stating that thermodynamics tells us what can happen, while kinetics tells us 

how fast it can happen.  For example, thermodynamics tells us that the reaction 

 H2(g) + Cl2(g) → 2HCl(g) 

has an equilibrium constant greater than 1037, yet we can place a mixture of H2 and Cl2 in a 

darkened container for upwards of a hundred years without a noticeable reaction occurring.  

Does this mean that thermodynamics is wrong?  Of course not!  What it does point out is that 

while thermodynamics tells us a great deal about chemical equilibria, it tells us nothing 

about how quickly equilibrium is attained.   

Perhaps this last phrase with its emphasis on the word equilibrium helps bring about 

another level of understanding of the different realms of thermodynamics and kinetics.  

Thermodynamics is limited to systems in equilibrium, while kinetics can treat systems in 

disequilibrium. 

Kinetics has a wide array of applications.  By studying the concentration dependence of 

reactions we can determine the optimum concentration conditions for running a reaction, the 

rate-determining step of the mechanism, and the mechanism of the reaction itself.  The 

temperature dependence of reactions tells us the optimum temperature for running reactions, the 

energy of activation for the reaction and information about microscopic mechanisms. 

Most of the efforts of modern chemical kinetics have been focused on elucidation of 

microscopic mechanisms.  To help understand the distinction between microscopic and 

macroscopic mechanisms consider the reaction 
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 H2 + 2ICl  →  I2 + 2 HCl 

When we study the concentration dependence of the reaction rates we discover that it is 

consistent with the reaction being broken down into two steps, both of which involve reactions 

between no more than two molecules. 

 H2 + ICl →  HI + HCl 

 HI + ICl →  I2  + HCl 

These reactions are called elementary reactions because they proceed as written in a single 

chemical step.  This breakdown of a complex reaction into a series of elementary reactions 

is what we mean when we talk about a macroscopic mechanism.  Macroscopic mechanisms 

of reactions are the types of mechanisms we'll be focusing on in Chem 309. When we discuss 

microscopic mechanisms, we're considering an elementary reaction like the first step 

 H2 + ICl  →  HI + HCl 

and asking questions like 

 - How do transitional, vibrational, and rotational energies affect the efficiency of the reaction? 

 - How do the bond lengths change as the reaction proceeds? 

 - What, if any, are the intermediates and how stable are they? 

 - How do reaction geometries affect reaction rates? 

- How does energy flow between the various degrees of freedom of the molecule? 

In other words, a microscopic mechanism is a detailed description of all of the processes that can 

affect an elementary reaction, and of the processes that occur during an elementary reaction. 

 On to classical kinetics.  We begin with a quick review of elementary concepts.  The first 

of these concepts is reaction stoichiometry.  If we have a general reaction, 



 
 

222 

aA + bB + ...   →   ... + yY + zZ  

the lower case letters represent the stoichiometric coefficients.  The stoichiometric coefficient for 

the ith species is νi, where νi is greater than zero for products, and νi is less than zero for 

reactants.  These νi are the same νi we used in studying the thermodynamics of chemical 

reactions.   

It is important to note that these stoichiometric coefficients are for the overall 

reaction, and may not be valid for the entire course of the reaction.  The reason is that an 

equation representing the overall reaction ignores any intermediates that may form in the course 

of the reaction.  If these build up in appreciable amounts there will be times when the balance of 

reactants and products does not follow the overall stoichiometry.  Such a reaction has time 

dependent stoichiometry.  An example of this is the thermal decomposition of acetone, which 

has the stoichiometry  

 2CH3COCH3 → 2CH4 + C2H4 + 2CO 

The overall reaction mechanism includes the steps 

 CH3COCH3  →  CH2CO + CH4 

and 2CH2CO  →  C2H4 + CO 

In the course of the reaction significant amounts of ketene, CH2CO, can build up. The presence 

of the ketene will clearly affect the stoichiometry at early and intermediate times in the reaction, 

since the presence of significant amounts of ketene means that less ethylene and carbon 

monoxide have formed. 

In contrast the reaction 

 H2 + Br2 → 2HBr, 
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while having a very complex mechanism, results in little or no buildup of reactive intermediates 

so that the stoichiometry of the overall reaction is the reaction stoichiometry at all times.  This 

type of stoichiometry is called time independent stoichiometry. 

Suppose we have a reaction with time independent stoichiometry 

 2A + 3B → Y + 2Z 

and at time t, the amounts of our reactants are given by nA, nB, nY and nZ, while initially at time 

0, the amounts are nA0, nB0, nY0, and nZ0.  We can relate the changes in the amounts of these 

various reactants and products by  

 n - n
-2

= n - n
-3

= n - n
1

= n - n
2

A A B B Y Y Z Z0 0 0 0  

In general the change in amount of the ith substance in the reaction mixture is given by  

 n - ni i i0 = ν ζ  

where ζ is our extent of reaction from chemical thermodynamics.  Note again that the extent of 

reaction is a positive number when our reaction proceeds from reactants to products, and is the 

same for all species in the reaction. 

We are interested, of course, in rates of reactions, so we need to quickly define our 

terms.  For our reaction  

 2A + 3B → Y + 2Z, 

the rate of consumption of A will be referred to as vA.  If we assume that the volume of the 

solution is constant, the rate of consumption for a reactant is defined as the negative of the 

change in concentration of A per unit time,  

 vA = [ ]-d A
dt

, 
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while for products, we speak of the rate of formation, given by  

 vY = [ ]d Y
.

dt
 

 

 

 

 

 

Note that if we plot [A] vs t, in general the slope changes with time so that the rate of change of 

concentration at time t1 is not equal to the rate of change of concentration at some other time t2.  

If we take the slope of the change of concentration with time at t = 0, we call the rate the initial 

rate of consumption for reactants, or the initial rate of formation for products. 

The rates of change of the various species in the system are related by their 

stoichiometric coefficients by 

 vA = 2/3vB = -2vY = -vZ. 

Clearly it is confusing to have a different rate describing the kinetics of each of the species in the 

reaction mixture.  We can avoid this by defining the rate of reaction as 

 v ≡ d
dt V

ζ 
 
 

. 

With the simplifying assumption that the volume remains constant during the reaction this 

becomes 

 v = 1 dc
dti

i

ν
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where ci is the concentration of the ith species in units of moles per liter.  In the event that the 

volume also changes we find that the rate of reaction has two terms and for some substance B is 

given by 

 v = 1 d[B]
dt

+ [B]
V

dV
dtB Bν ν

. 

The first term is the derivative of extent of reaction normalized to unit volume, while the second 

term corrects for the effect of the change of volume on the concentration when the reaction 

composition changes. 

The equation is derived as follows. We begin with our equation for rate of reaction for 

some substance B, 

v
V

dn
dtB

B=
1

ν
. 

At any given concentration we can write nB = [B]V.  Differentiating this for the case where both 

[B] and V can change yields 

dnB= [B]dV + Vd[B]. 

Inserting this into our first equation yields 

v d B
dt

B
V

dV
dtB B

= +
1
ν ν

[ ] [ ] . 

It is usually not necessary to consider the terms for change of volume for reactions in 

solution, where volume changes are usually negligible.  However for gas phase reactions at 

constant pressure, where volume changes can be substantial, the more complicated treatment can 

be necessary. 

All of you should be familiar with rate equations from general chemistry.  I'd like to 
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review them quickly.  In general, rate equations are equations that relate the rate of a chemical 

reaction to the concentrations of the species present in the reaction mixture, i.e. 

 [ ] [ ] [ ]v ( , , ...)f A B C= . 

Note that this equation can be something very complicated such as  

[ ] [ ]
[ ] [ ]

3/ 2
1

2 1

k A C
v

k A k B−

=
+

 

or something as simple as  

[ ]1v k A=  

In these example equations, the substances A, B, C etc, can be reactants, products, intermediates 

or catalysts. 

For some reactions, the rate of reaction can be expressed by a particularly simple 

equation of the form 

 v = k[A]α[B]β… 

where the concentrations of reactants and catalysts can be included in the equation and where k, 

α, and β are independent of the concentration and of time.  It is important to emphasize that this 

simpler rate equation is not going to work for all reactions.  It is also important to recognize that 

these rate equations are strictly empirical. 

The rate of consumption of a given species will be represented by the equation 

 vA =  kA[A]α [B]β 

where α and β are the same exponents as for the overall reaction, and kA is related to k by  

 kA = k|νA| 

So for our reaction 
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 2A + 3B → Y + 2Z, 

 k = kA/2 = kB/3. 

The exponent α is called the order of the reaction with respect to A.  Similarly the exponent β 

will be called the order of the reaction with respect to B.  α and β are called partial orders.  

The sum of the partial orders,  

 α + β + ... = n, 

is called the order of the reaction.  Once again I wish to emphasize that α and β are empirical 

quantities.  They are not necessarily integral, not necessarily positive, and not necessarily 

related to the reaction stoichiometry. 

The simplest case of a rate law is when the rate is linear with the concentration of a single 

reactant, i.e. 

 v = k[A]. 

This is called a first order reaction.  If the rate depends on the square of the concentration of a 

single reactant, or the product of two reactant concentrations, i.e.,  

 v = k[A]2 

or  v = k[A][B], 

the reaction is said to be second order.  The constant k, once again is called the rate constant. 

The rate constant depends on the temperature and the chemical identity of the reactants.  

Its dimensions depend on the order of the reaction.  For example, for any reaction we have  

 v= 1
V

dn
dti

i

ν
 

which has units of moles L-1 s-1.  So for a first order reaction, since v = k[A], and concentration 
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has units of moles L-1, the units of k must be s-1.  However, for a second order reaction with rate 

law v = k[A]2, k must have units of l mol-1 s-1. 

It is important to note that not all reactions have well defined orders.  The famous 

Michaelis-Menten Law of enzyme kinetics has the form 

 v = V[A]
k + [A]m

, 

which does not have a well-defined order. 

 At this point it is useful to distinguish between elementary and composite, or complex, 

reactions.  An elementary reaction is one that occurs in a single chemical step, with no 

experimentally detectable reaction intermediates.  If no such intermediates can be detected or 

need to be postulated to interpret the behavior of the system, a reaction is assumed tentatively to 

be elementary.  However, it must be borne in mind that further experimental work may reveal 

that a reaction originally believed to be elementary in reality occurs in more than one step.  For 

example, the reaction 

H2 + I2 → 2HI 

was long believed to be elementary.  However the reaction now is known to occur in part by a 

mechanism involving the following elementary steps: 

I2 ↔ 2I 

I + H2 → HI + H 

H + I2 → HI + I 

 The molecularity of an elementary reaction is the number of reactant particles (atoms, 

molecules, free radicals or ions) that are involved.  If one reactant particle is involved then the 

reaction is said to be unimolecular.  If two are involved the reaction is bimolecular, three 
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trimolecular, etc.  Note that in general, the molecularity is distinct from the order.  In general, the 

molecularity tells us mechanistic details of a reaction, while the order simply tells us the 

dependence of the reaction rate on the concentration of a reactant. 

 Composite reactions are those that involve more than one elementary reaction.  The term 

molecularity has no meaning for a composite reaction.   

It is convenient to number the reactions that make up a composite reaction in such a way 

that reverse reactions are identified easily.  For this reason the reverse of reaction 1 is referred to 

as reaction -1, and the rates and rate constants are denoted by corresponding subscripts, for 

example v1, v-1, k1 and k-1. 

 A composite reaction mechanism sometimes includes a cycle of reactions such that 

certain reaction intermediates consumed in one step are generated in another.  If such a cycle is 

repeated more than once, the reaction is known as a chain reaction. 

For example, if hydrogen and bromine react in the gas phase and the product HBr is 

removed as fast as it is formed the reaction is believed to proceed by the following steps:   

(1) Br Brk
2

1 2 →  Initiation 

(2) Br H HBr Hk+  → +2
2  Chain Propagation 

(3) H Br HBr Brk+  → +2
3  Ditto 

(-1) Br Br Brk+  →−1
2   Termination 

Reactions (2) and (3) constitute a cycle and are known as chain-propagating steps; in 

reaction (2) a bromine atom is produced which is consumed in reaction (3) while in reaction (3) a 

hydrogen atom is produced which is consumed in reaction (2).  Under normal conditions this 

cycle occurs a number of times, and the reaction is therefore a chain reaction.  Reaction (1), 
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which produces active intermediates, is known as an initiation reaction, and its reverse, reaction 

(-1) is called a termination step or chain ending step.  Chain reactions always involve initiation 

and termination steps and two or more chain-propagating steps. 
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Lecture 34 

Last time we noted that one of the goals of chemical kinetics is to determine the way in 

which reaction rates depend on concentration.  There are two primary methods of analyzing 

concentration data to determine its effect on reaction rates, the differential method and the 

integral method.  In both methods the basic data are concentration vs. time curves.   

In the differential method, the slope of the concentration versus time curve is 

analyzed.  To see how this is done, remember that if a reactant has order n with respect to a given 

reactant, then the rate can be written as 

 v= 1 dc
dt

= kc
i

n

ν
 

If we take the log of both sides we get 

 log v = log kcn = n log c + log k. 

Thus a plot of log v vs log c will have a slope equal to the order. 

Empirically there are two ways to get the 

concentration data.  In both methods, it is critical to 

remember that a rate is determined from the slope of a 

concentration vs time curve.  The first method is to 

change the initial concentrations, determine the initial 

slope, and plot the log of the initial rate vs the log of 

the initial concentration.  The order is then the slope of 

the log-log plot.  The order determined by this method 

is labeled nc, to indicate that the initial concentrations were changed.   

The alternative method is to follow the concentration of one sample over time, and to 
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determine the rate at various points in the course of the reaction.  Plots of log v vs log [ ] then 

yield the order.  Orders determined this way are labeled nt.  It is important to note that nt is not 

necessarily equal to nc.  The reason is that when the reaction is followed over time, 

intermediates may build up which change the rate of reaction, and therefore the apparent 

order of the reaction.  We see from this that nc and nt each provide useful information that the 

other does not. nc shows the concentration dependence under initial conditions.  nt shows us the 

order based on conditions averaged over the whole course of the reaction.  In addition, 

comparison of the two shows whether additional species need to be considered in the rate law.  

Once nc or nt is determined for one of the reactants, the procedure is repeated for each reactant, 

catalyst and product  to determine the overall rate law. 

The alternative method for determining the order of reaction for each substance is called 

the method of integration.  Basically this method is to guess an order for the reaction, see 

what the concentration dependence should be and compare the prediction with the 

experimental results.  We will solve the concentration equation for four cases - first order, 

second order in one substance, second order overall with two reactants having partial orders of 

one, and then finally the general case of nth order in one substance. 

The simplest example of a first order reaction would be an elementary reaction of the 

form  

 A → Z,  

but more complex reactions like 

 2A → Z 

or A + B → Z 
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could be first order reactions as well. Remember, there is not necessarily any relationship 

between the stoichiometry of a reaction and its order.   

For the first of these reactions, at t = 0, we have [A] = a0, and at some time t later we have 

[A] = a0 – x, where x is the amount of A consumed at time t.  Therefore the rate of consumption 

of A is given by 

 vA = - d(a - x)
dt

= dx
dt

.0  

Since the reaction is first order we can write 

 dx
dt

= k (a - x)A 0  

Separation of variables and integration yields 

 - ln (a0 -x )  = kAt + c 

Finally evaluation of the constant of integration yields our integrated rate equation 

 ln( a
a - x

)= k tA
0

0

 

Therefore if our reaction is first order, a plot of ln( a
a - x

)0

0

vs t will be linear with a slope of kA.  

Note that this result is exactly equivalent to  

[ ]
0[ ]ln A

A k t
A

 
=  

 
. 

There are two possibilities for second order reactions.  The first is that the reaction is 

second order in a single reactant, i.e.,  

 vA = kA(a0 - x)2,  

where a0 - x is the concentration of A at time t.  Once again note that this rate law could arise 
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from the same range of reactions as our first order reaction, including 

 A → Z 

 2A → Z 

and A + B → Z. 

The differential rate law for a reaction which is second order in one reactant is  

 dx
dt

= k (a - x )A
2

0  

When we collect variables, integrate and evaluate the constant of integration, we find that our 

integrated rate law is 

 x
a (a - x)

= k tA
0 0

 

Therefore a plot of x
a (a - x)0 0

 vs t will yield a straight line with slope kA when the reaction is 

second order in one reactant.  Note that this result is equivalent to  

[ ] [ ]0

1 1
Ak t

A A
− = . 

Interestingly, if we have a reaction which has an overall order of two, but which has 

partial orders of 1, i.e., for reactants A and B, 

 v = k [A][B], 

the result is completely different.  If we let [A]  = a0 - x and  [B] = b0 - x, then our differential 

equation is  

 dx
dt

= k (a - x)(b - x)A 0 0  

This is a fairly difficult integral to solve, but can be solved in one of three ways.  The oldest and 
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least recommended is to use the method of partial integration.  It works fine but it’s just too 

much work.  The second is to look it up in a table of integrals.  Third, you could use a symbolic 

manipulation program like Mathematica or Maples to do the integration.  No matter what method 

you use, when you carry out the integral and evaluate the constants of integration, the rate law is 

 1
a -b

[ b (a - x)
a (b - x)

] = kt
0 0

0 0

0 0

ln  

There are tables available where you can find the integrated rate laws for a wide variety of 

reaction orders and a wide variety of initial conditions.  In each case you determine the order 

of your reaction by plotting your data according to the appropriate integrated rate 

equation and testing for linearity. 

 A reaction of general order n in one reactant, where n is greater than one, would have the 

rate expression 

[ ] [ ]nd A
v k A

dt
= − = . 

A simple integration of this expression yields the result 

( ) [ ] [ ]1 1

0

1 1 1
1 n n kt

n A A− −

 
 − =
 −  

, 

where [A] is the concentration of A at time t, and [A]0 is the initial concentration of A. 

When the reaction rate depends on the concentration of only one reactant, it is relatively 

easy to determine the rate law.  It is more work for a reaction in which the rate depends on 

several species, whether they are reactants, products, or catalysts.  If the rate of consumption is 

relatively slow, then we can simply use the method of initial rates, varying the initial 

concentration of each species in turn.  However, this method presupposes that the concentrations 
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of the species which we are not varying are either constant or are changing slowly enough that 

their changes do not affect the apparent order of the reaction.  As an example, consider the 

bromination of acetone.  The reaction here is 

 CH3COCH3 + Br2 → CH3COCH2Br + HBr. 

The rate of reaction is a function of the concentrations of bromine, acetone, and a catalyst, H+, so 

our rate equation is 

 v = k [H+]α[CH3COCH3]β[Br2]γ, 

where α, β and γ are the orders we wish to determine.  Now suppose that while we are examining 

the effect of changing the bromine concentration on the reaction rate, the acetone concentration 

is also changing rapidly.  This would distort the results of the bromine study. 

One solution to this is the method of isolation in which all of the species in the reaction 

except one are present in large excess.  In effect what this does is to keep the concentrations of 

all species but one approximately constant.  This means that the observed order of the reaction 

will be the partial order of the species under consideration.  Thus if our rate law is  

 v = k [A]α[B]β[C]γ, 

and we isolate A, the order of the reaction will be α.  If we now repeat the experiment isolating 

B and C in turn, we can determine the overall rate law for the reaction.   

The fact that we can isolate a single component, and therefore simplify the rate law 

means that the method of integration can still be used for relatively complex systems, since the 

integrated rate laws involving only a single substance are all simple. 

Another measure of reaction rates that can also be used to distinguish between reaction 

orders is the half-life.  The half-life is the time necessary for the concentration of a substance 
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to be reduced to half its initial value.  The half-life of a substance is determined by the 

integrated rate law of the reaction.  For a first order reaction the rate law is  

 ln( a
a - x

)= k tA
0

0

 

If we substitute t = t1/2 and x = a0/2, we find that for a first order reaction 

 t = .693
k1 2/  

We will find in general that the half-life is inversely proportional to the rate constant.   

For a reaction that is second order in one reactant, the rate law is 

 x
a (a - x)

= k tA
0 0

 

Substituting t = t1/2 and x = a0/2 yields 

 t = 1
a k A

1 2
0

/  

Note that for this case, the half-life depends on the initial concentration.  In fact we find that 

for all reactions with orders other than one that the half-life depends on the initial 

concentration.  Note that once again we are talking of the half-life of the reactant, and not the 

reaction.  Consider the reaction 

 A + B → Z, 

where a0 ≠ b0.  Since the initial amounts of the substances are not equal, the half-lives cannot be 

equal.  Clearly in this case it is not meaningful to speak of reaction half-lives.  In general, it is 

meaningful to speak of reaction half-lives only when the reactants are present in their 

stoichiometric ratios.  For example, in the case we just discussed, if a0 = b0, then we can talk 

about reaction half-lives.  Similarly for a reaction with stoichiometry 
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 A + 3B → Z, 

we can only talk about reaction half lives if b0 = 3a0.  Otherwise it is only meaningful to speak of 

reactant half-lives.   

 We can write an equation for the half life of a general reaction of order n>1 for a single 

reactant, based on our integrated equation for a reaction with order n.  It is 

( )
( )[ ]

1

1/ 2 1

0

2 1

1

n

nt
k n A

−

−

−
=

−
. 

We can see from this equation that a plot of the log of t1/2 vs the log of [A]0 can be used to 

determine the reaction order.  To see this we take the log of the equation above to get 

( )
( ) ( ) [ ]

1

1/ 2 0

2 1
log log 1 log

1

n

t n A
k n

− −
= − −

−
. 

Thus a plot of log t1/2 vs log [A]0 will have a slope of n-1, where n is the order. 

Half-lives have the useful property that they can be used to compare how fast two 

reactions with different orders will proceed.  This is one case where the half life is more 

transparent than the rate constant, since the rate constants for reactions with different orders will 

have different units and will be difficult to compare.  We can also use half-lives for a relatively 

quick determination of whether a reaction is first order.  If the reaction is first order we can 

measure the half-life for two or more different initial concentrations, and it will not change, 

while for higher order reactions the half life will be dependent on the initial concentration. 

How do these methods for determining rate laws compare?  If you know very little 

about the reaction the differential method is best for the following reasons.  First, if the log-

log plot is linear, then the reaction has an order.  Second, by distinguishing between nt and nc it 

helps us detect the presence of intermediates in the reaction.  Third, it allows us to find non-



 
 

239 

integral orders if they are present.  The main advantage of the integral method is that it may 

provide more accurate rate constants than the differential method.  A disadvantage is that a 

reaction may have a non-integral order, yet fit one of our integrated rate laws fairly well.  This 

means that it is not too hard to get at least slightly incorrect orders from the integral method.  A 

second disadvantage is that the integral method gives us only nt, since n is obtained by following 

the concentration over time. 
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Lecture 34 

At this point we've covered rate laws for first and second order reactions that go only 

toward products, i.e.,  

 A → Z  

or A + B → Z. 

However, many reactions proceed in both directions under normal reaction conditions, i.e., 

 
1

1

k

k
A Z

−

  

where k1 is the rate constant for the forward reaction and k-1 is the rate constant for the reverse 

reaction.  Suppose that both the forward and the reverse reactions are first order, the initial 

concentration of A is a0 and the initial concentration of Z is 0.  After a time t has elapsed, the 

concentration of A is a0 -x , and the concentration of Z is x.  Therefore at time t, the rates for the 

two reactions are 

 v1 = k1 (a0 - x), 

where v1 is the rate of production of Z, while for the reverse reaction 

 v-1 = k-1 x 

where v-1 is the rate of consumption of Z.  Thus the overall rate of the reaction should be given 

by the difference between the rates of the forward and reverse reactions,  

 v = dx
dt

= k (a - x)- k x1 0 1− . 

If the two reactions proceed until equilibrium is achieved, then there is no longer a net 

production or consumption of Z, so the overall rate becomes 0 and we can write 

 0 = k1 (a0 - xe) - k-1 xe 
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where xe is the equilibrium concentration of Z. If we use this to eliminate k-1 from our rate 

equation, our differential equation becomes 

 dx
dt

= k a
x

(x - x)
e

e
1 0  

If we integrate this equation and apply the boundary condition that x = 0 at t = 0, we get  

 x
a

( x
x - x

)= k te e

e0
1ln  

Note the similarity of this equation to the integrated rate law for a first order reaction, which we 

derived earlier.   

The first conclusion we draw from this is that if both opposing reactions are first 

order, equilibrium is approached exponentially.  It is also apparent that we can determine k1 

by plotting x
a

( x
x - x

)e e

e0

ln  vs t.  How could we determine xe?  [By measuring x(t).  xe will be the 

asymptotic value.]  Note that the biggest difference between a simple first order reaction and 

opposing first order reactions is that the simple first order reaction approaches a 

concentration of reactants of 0 exponentially, while the opposing first order reactions 

approach equilibrium exponentially. 

Once we have determined k1 we can also determine k-1 because the equilibrium constant 

is given by  

 K = k
keq

1

1−

 

To see this remember that at equilibrium the change in concentration of Z = 0, so the reaction 

rate is zero.  This means that we can write 

 0 = k1 (a0 - xe) - k-1 xe. 



 
 

242 

This can be rewritten as  

 k
k

= x
a - x

e

e

1

1 0−

 

But xe = [Z]eq, and a0 - xe = [A]eq. Making this substitution yields 

 k
k

=
Z
A

= Keq

eq
eq

1

1−

 

We’ve noted already that for opposing first order reactions the equilibrium is approached 

exponentially, but what will be the rate constant for the process?  We begin with the equation  

 x
a

( x
x - x

)= k te e

e0
1ln  

At equilibrium we have 

 0 = k1 (a0 - xe) - k-1 xe, 

which can be rewritten as 

 x
a

= k
k + k

e

0

1

1 1−

 

Substituting this in our equation for x as a function of t yields 

 ln( x
x - x

)= (k + k )te

e
1 1−  

So the rate constant with which the system approaches equilibrium is the sum of the rate 

constants of the forward and reverse reactions.  This result is not necessarily intuitive.  If for 

example, k1 is large, and k-1 is small, many of us would assume that k is the average of the two.  

The result we’ve obtained tells us something very different, that adding any additional first order 

process, no matter how slow, to the mechanism increases the overall rate of the reaction. 

 This is an important result, because the opposing reactions can be viewed as parallel first 
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order processes, 

1kA Z→  

and 

1kA Z−← , 

and because we can generalize our results to any set of parallel first order processes.  The rule is 

simply that the overall rate constant for change in concentration of a species affected by n 

parallel first order processes is just the sum of the rate constants of those processes,  

1

n

i
i

k k
=

=∑ , 

where k is the overall rate constant, and the kn’s are the rate constants of the individual parallel 

processes. 

The significance of this is that many processes that are important in understanding the 

dynamics of chemical processes are intrinsically first order.  For example, in photochemistry, we 

are interested in the rates of reactions once a molecule has been activated by absorption of a UV 

or visible photon, 

hA Zν→ . 

The first step of this reaction is the creation of an excited state of the reaction, 

*hA Aν→ . 

The yield of the reaction and rate at which it proceeds are directly tied to the concentration of A* 

as a function of time.   

There are several different first order processes that can reduce the concentration of A*.  

One, of course, is reaction, 
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1* kA Z→ . 

A second is fluorescence, 

* fkA A→ . 

A third is intersystem crossing, the conversion of a singlet excited state to a triplet excited state, 

* isck tripletA A→ . 

A fourth would be thermal relaxation to the ground state, 

* thermalkA A→ . 

Our rule tells us that the overall rate constant for the decay of A* is given by 

1 f isc thermalk k k k k= + + + , 

and that the decay of A* with time is given by 

* *( ) (0) ktA t A e−= , 

where A*(t) is the population of A* at time t,  and A*(0) is the initial population of A*. 

 A related concept to this overall rate constant is the lifetime of the species, τ .  For a first 

order process, τ  is defined as the time that it takes for the population of a species to be reduced 

to 1/e of its initial value.  It is easy to show that for a first order reaction, 

1kA Z→ , 

the lifetime is given by  

1

1
k

τ = , 

while for a pair of first order reactions approaching equilibrium,  

1 1

1 1
k k k

τ
−

= =
+

. 
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We see that for a set of parallel first order processes affecting the population of some species,  

1 1

i
i

k k
τ = =

∑
, 

and therefore for our photochemical process,  

1

1 1

f isc thermalk k k k k
τ = =

+ + +
. 

An interesting conclusion from this discussion, as noted above, is that any time any process that 

affects the population of a reactant, no matter how slow, is added to a mechanism, the rate of 

change of that reactant is increased, and consequently, its lifetime is decreased.  

 An important pair of concepts related to the kinetics of chemical equilibria are the 

principle of microscopic reversibility, and the principle of detailed balance at equilibrium.  The 

principle of microscopic reversibility can be expressed as follows:  “In a system at equilibrium, 

any molecular process and the reverse of that process occur, on the average, at the same rate.”  

The principle of detailed balance, which is very similar, but deals with collision processes, 

including reactive collisions, states that in a system at equilibrium each collision has its exact 

counterpart in the reverse direction, and that the rate of every chemical process is exactly 

balanced by that of the reverse process.   

 These are powerful concepts, but often incorrect conclusions are drawn if they are used 

incorrectly.  In particular, they can only be applied to processes that are both elementary and at 

equilibrium. For example, we concluded that for any reaction, the ratio of rate constants for 

forward and reverse reactions is equal to the equilibrium constant.  However, rate constants are 

most typically measured for systems in disequilibrium, and this conclusion is not necessary 

correct for other than equilibrium conditions. 
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When we studied chemical equilibria, one of the questions that we asked was how the 

equilibrium constant changed when we change the temperature of our system.  Now that we are 

studying the rates of chemical reactions we want to ask a similar question - how does 

temperature affect the rate of a chemical reaction? 

In all of the models that we are going to consider there is one common assumption:  that 

all of the temperature dependence is contained in the rate constant, i.e.,  

 v(T) = k(T) [A]α[B]β[C]γ.... 

Van't Hoff, who was responsible for our equation for the temperature dependence of the 

equilibrium constant, derived the following equation for the temperature dependence of the rate 

constant.  He began with his equation for the temperature dependence of the equilibrium 

constant,  

 (
K
T

)= U
RT

eq∂

∂

ln ∆ 0

2  

In our discussion of the kinetics of opposing reactions, we showed that when equilibrium 

has been reached,  

 K = k
keq

1

1−

 

If we substitute this into the Van't Hoff equation, we get 

 ∂
∂

∂
∂

−ln lnk
T

- k
T

= U
RT

1 1
0

2
∆  

where k1 is the rate constant for the forward reaction and k-1 is the rate constant for the reverse 

reaction.  Van't Hoff's real contribution here was to suggest that the energy ∆U° is the 

difference between a characteristic forward energy and a characteristic reverse energy, i.e.,  

 ∆U° = E1 - E-1,  
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and that the energy of the forward reaction affected only the rate constant of the forward 

reaction, while the energy of the backward reaction affected only the rate constant of the 

backward reaction. 

This means that we can separate our equation into two separate equations, 

 ∂
∂
ln k
T

= E
RT

1 1
2  

and ∂
∂

− −ln k
T

= E
RT

1 1
2 . 

Integrating the equation and dropping the subscripts yields 

 k = Ae E RT− /  

where A is a constant which we shall discuss shortly.  This equation is commonly known as the 

Arrhenius equation, which states that the rate constant increases with increasing temperature, 

and that the effect of increasing the temperature depends on a preexponential factor, A, and a 

parameter E which we call the activation energy. 

This is the equation that you probably used in general chemistry.  It is still the most 

widely used equation for the analysis of the temperature dependence of reaction rates.  So the big 

question is, why did they call this equation after Arrhenius, when Van't Hoff derived it in the late 

19th century?  Why isn't this called the Van't Hoff equation? 

One possible answer is that there already was a Van't Hoff equation and they needed 

another name for this one.  This explanation doesn't work though, since as any mathematician 

knows there are biiillions and biiillions of Euler equations.  If mathematicians can handle all of 

these Euler equations, we chemists can handle a few measly Van't Hoff equations. 

The real reason is that at the time of Van't Hoff, there were two other simple equations to 
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explain the temperature dependence of rate constants.  One of them even provides a slightly 

better fit to temperature data than the equation of Van't Hoff and Arrhenius.  However, no one 

was able to come up with a physical model to explain these other two equations.  Arrhenius's 

contribution was to provide a simple physical picture to explain Van't Hoff's equation. 

In Arrhenius's picture, the activation energy is the barrier to reaction.  In order for a 

reaction to occur, molecules must have energies greater than or equal to this barrier. The 

temperature dependence arises from the way that the percentage of molecules having energies 

greater than or equal to this barrier changes with temperature.  This percentage is described by 

the Boltzmann factor, 
E
kTe

−
, which describes the fraction of molecules having a given energy at a 

given temperature.  The factor tells us that at a given energy, E, the higher the temperature, the 

more molecules there will be that have that energy, which explains why rates of reaction increase 

with temperature.  It also tells us that as the required energy E increases at a given temperature, 

the fraction of molecules that have that required energy decreases, which explains why, at a 

given temperature, a molecule with a higher activation energy generally reacts more slowly than 

one with a lower activation energy.  This is the modern view of the activation energy.   It is 

because the Arrhenius equation is the one that gives us physical insight into the reaction process 

that it is the one that has survived.  

Since the activation energy is a positive quantity, the majority of reactions have k 

increasing with temperature.  For some reactions, however, the rate decreases with temperature, 

implying a negative activation energy.  A negative activation energy is physically meaningless.  

When a negative activation energy is obtained, what is actually occurring is that the activation 

energy is zero, and the preexponential factor A slowly decreases as T increases.  Such reactions 
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are generally complex, involving the formation of a weakly bound intermediate species.  An 

example is the recombination of iodine atoms in the presence of a third body M, which proceeds 

via the following steps: 

I M IM+ →  

2IM I I M+ → +  

The IM species is a van der Waals complex whose stability decreases with increasing 

temperature. 

It is still possible to improve on the Arrhenius equation.  In the Arrhenius equation it is 

assumed that the preexponential factor A is temperature independent.  This is not rigorously true.  

In most cases, where E is substantial, the temperature dependence due to the exponential term is 

so large that it masks the temperature dependence of A.  However, in cases where Ea is close to 

zero, the temperature dependence of the reaction rate will reflect both the temperature 

dependence of the preexponential factor and that due to the exponential term.  In some cases 

where plots of ln k vs 1/T are not linear, better fits can be obtained with the equation  

 k = AT em E RT− /  

for which there is also theoretical justification. 

 What is the source of the temperature dependence of the pre-exponential factor, A?  

Remember that in adopting the Arrhenius equation, we’re dividing the temperature dependence 

of the reaction rate into the effect of the activation process, contained in the term 
aE

RTe
−

, and the 

effects of all other factors, contained in the preexponential factor, A.  To get a sense of the 

reason for the temperature dependence of A we’ll consider two factors that contribute to the 

value of A for a given reaction – the collision frequency, and the steric factor.   
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 It should be fairly obvious that collision frequency will affect the rate at which a reaction 

occurs.  The Arrhenius factor only shows the effect of energy on a reaction once the reactants 

have met.  The rate at which they meet, which is described by the collision frequency, is also a 

critical factor in determining reaction rates.  It should also be clear that the rate of collisions 

increases as temperature increases, since the average speed of a molecule at a given temperature 

is given by  

1/ 23v kT
m

 =  
 

. 

While this makes it apparent that collision rates are important in determining the rates of 

reactions such as bimolecular and termolecular reactions, in which more than one reactant has to 

meet, it turns out that collision rates are critical for determining the rates of unimolecular 

reactions as well.  The reason for this is that collisions between molecules are the main 

mechanism for providing a molecule with sufficient energy to overcome the activation barrier. 

 The other critical factor in the pre-exponential factor is the steric factor.  The steric factor 

recognizes that for a reaction to occur, it is usually not just necessary for two species to collide, 

but for the right parts of the two molecules to strike each other.  For example in the reaction 

3 3K CH I KI CH+ → + , 

it is necessary for the potassium atom to collide with the iodine atom for the reaction to proceed.  

However, if the potassium collides with the methyl group, no matter how high the collision 

energy is, the reaction will not proceed.  So we can see from this that there will be orientations of 

the potassium relative to the methyl iodide at which no collision will result in a reaction. 

 Why does this lead to temperature dependence?  We need to be aware that the 

orientations of the reactant molecules relative to each other are not static.  Vibrations and 
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especially rotations of the molecules have the effect of presenting different parts of the reacting 

molecules to each other, even in the course of an individual collision.  Of course, the higher the 

temperature is, the greater the degree of rotation, and the greater the degree of vibration, and 

these temperature dependences appear in the temperature dependence of the preexponential 

factor.  Once again, it needs to be emphasized that the temperature dependence of the 

preexponential factor is typically smaller than that of the Arrhenius factor, and that therefore, 

unless activations energies are small, or rate data extremely precise, it is typically not observed. 

To summarize, our equation of first resort is the Arrhenius equation,  

 k = Ae E RT− /  

From it we extract the activation energy, which we formally define as 

 E = -R k
(1 / T)

.a
∂
∂

ln  

This definition is important because it means that the activation energy is defined even if the plot 

of ln k vs 1/T is not linear.  Let’s see what this means.  This is a somewhat exaggerated example 

of a nonlinear ln k vs 1/T plot.  The activation energy is the slope of this plot.  If the plot is 

curved it means that the activation energy is temperature dependent.   

But it also means something else.  Remember that  

k = Ae E RTa− /  

So the intercept of the ln k vs 1/T line is the ln of the preexponential factor.  Note that when the 

plot is curved and the activation energy is temperature dependent that the preexponential factor is 

temperature dependent as well.   

Now if our plot of ln k vs 1/T had been linear, we would have determined Ea from the 

slope, and A from the intercept, and we would have been done.  However, current practice is to 
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fit kinetic data that does not yield a straight line to  

 k = AT e .m E RT− 0 /  

Note that the energy in this equation is labeled E0 rather than Ea.  What is the relationship 

between these two quantities?  We can determine this by taking the log of the above equation to 

obtain 

 ln ln lnk = A+ m T - E
RT

0  

and then applying our definition of Ea, 

 E = -R K
( T)a
∂
∂

ln
/1

 

This yields 

 Ea = E0 + mRT. 

This gives a simple physical interpretation to E0.  It is the activation energy the reaction would 

have if it could be run at absolute zero.  Note that for a reaction where the plot of ln k vs 1/T is 

linear, Ea and E0 are identical. 
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Lecture 35 

 So far in determining the rate equations for chemical reactions we have limited ourselves 

to integrating simple rate laws.  I'd like to return to complex reactions, and the relationships 

between their mechanisms and their rate laws.  As noted earlier, most chemical processes are not 

elementary, but are composed of a sequence of elementary reactions.  A reaction that takes place 

through more than one elementary reaction is called a composite reaction, and the sequence of 

elementary reactions by which the composite reaction takes place is called the reaction 

mechanism. 

 How do we tell experimentally whether a reaction is elementary or composite?  As we 

noted earlier, this can be extraordinarily difficult.  However, there is one clear distinction 

between elementary and composite reactions.  That is that the rate law for an elementary reaction 

can be deduced from the balanced equation for the reaction.  For an elementary reaction of the 

form,  

aA + bB → cC + dD, 

the rate law is  

v = k[A]a[B]b, 

where the partial orders of the reactants A and B are the same as the stoichiometric coefficients 

for the reaction.  Thus if we determine a rate law for a reaction, and the partial orders are 

different than the stoichiometric factors, the reaction is composite.  However, the converse is not 

necessarily true - if the partial orders are the same as the stoichiometric factors, the reaction is 

not necessarily elementary, since a composite reaction may have a mechanism that yields a rate 

law that appears to be that of an elementary reaction.  Thus while comparison of partial orders 
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and stoichiometric coefficients can conclusively tell us that a reaction is composite, it can only 

suggest that a reaction may be elementary. 

 As an example, the gas phase reaction between nitric oxide and hydrogen has the 

balanced equation 

2NO + 2 H2 → N2 + 2H2O. 

If this reaction were elementary, the reaction would be fourth order with a rate law 

v = k[NO]2[H2]2. 

However, the experimentally determined rate law for the reaction is 

v = k[NO]2[H2], 

and the reaction is third order.  Therefore the reaction is composite. 

 One of the reasons that reactions involving many reactants are usually composite 

reactions is that collisions involving large numbers of reactants are very improbable.  Thus 

collisions involving three reactants are less likely than collisions involving two reactants, and 

collisions involving four or more reactants are even less likely.  Thus reactions involving more 

than three reactants will proceed more efficiently as a series of unimolecular, bimolecular or 

trimolecular reactions in a composite reaction. 

Composite reactions can be made up from elementary reactions in a number of ways.  

One is when two or more reactions occur in parallel, known as simultaneous reactions.  An 

example of two simultaneous reactions would be  

A → Y 

A → Z, 

where reactant A can form two different products.  Sometimes the simultaneous reactions result 
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in competition for a reactant such as the case 

A + B → Y 

A + C → Z 

where B and C compete with one another for A. 

 Reactions that occur in forward and reverse directions are called opposing reactions, i.e. 

A + B  Z, 

where the reactions A + B → Z and Z → A + B are opposing.   

 Reactions occurring in sequence such as  

A → X → Y → Z 

are known as consecutive reactions and the overall process is said to occur by consecutive steps.  

Reactions are said to exhibit feedback if a substance formed in one step affects the rate of a 

previous step.  For example in the scheme 

A X Y Z1 2 3→ → →  

the intermediate Y may catalyze reaction 1 (positive feedback) or inhibit reaction 1 (negative 

feedback).  Positive feedback is also known as autocatalysis.  Negative feedback is also known 

as inhibition. 

 Now suppose we have some composite reaction, 

2A + B + C → Y + Z. 

We propose a mechanism, or a sequence of elementary reactions, for this composite reaction.  

How do we know if this mechanism is reasonable?  The simplest answer is that we measure the 

empirical concentration behavior of the reactants and products and compare this to the behavior 

predicted by the mechanism.  What this implies is that we must develop tools for working out 
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rate equations for composite reactions. 

 Let’s look at a simple example, the sequence 

1

1

k

k
A X

−





 

X Z
k
→

2

 

In the first step of the mechanism we have opposing reactions in which A reacts to form an 

intermediate X and X reacts to form A.  In the second step, X reacts to form Z. 

 The most basic form of the rate equation is the differential rate equation.  It is extremely 

useful because, as we will soon find out, finding integrated rate equations for even relatively 

simple composite mechanisms gets difficult very quickly and is often impossible, but even for 

complex mechanisms it is relatively easy to work out the differential rate equations.  This 

differential rate law can then be tested by measuring concentration vs time and then either 

calculating the slopes of the curves or by numerically integrating the rate law on a computer. 

 In our simple example we want to write rate laws for three species, A, X and Z.  Let’s 

begin with A.  There are two reactions that affect the concentration of A, reaction 1, which 

consumes A and reaction –1, which produces A.  The rate of reaction, − d A
dt
[ ] , is the difference 

between the rate of consumption of A in reaction 1, given by k1[A] and the rate of production, 

given by k-1[X], i.e.,  

− = − −
d A

dt
k A k X[ ] [ ] [ ]1 1  

For X, the rate of formation is the difference between the rate at which X is formed and the rate 

at which it is destroyed.  All three reactions affect the concentration of X, with two, reactions -1 

and 2, consuming it and one, reaction 1, forming it.  The rate of formation of X is given by 
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d X
dt

k A k X k X k A k k X[ ] [ ] [ ] [ ] [ ] ( )[ ]= − − = − +− −1 1 2 1 1 2  

Finally, the rate law for Z is trivial, involving only one elementary reaction, and is given by  

d Z
dt

k X[ ] [ ]= 2 . 

It is easy to see how this procedure for generating differential rate equations for each species 

could be generalized to very complex reactions. 

 It is possible to come up with integrated rate laws for the simplest of complex reactions.  

Consider, for example, the two step sequential reaction, 

A X
k
→

1

 

X Z
k
→

2

 

We can write rate laws for each of the three species.  We’ve already shown that the integrated 

rate law for A is  

[ ] [ ]A A e k t= −
0

1  

To find the integrated rate law for [X] we need to begin by writing out the differential rate law 

for X.  WHAT IS THE DIFFERENTIAL RATE LAW FOR X? 

d X
dt

k A k X[ ] [ ] [ ]= −1 2 . 

If we substitute our equation for [A] in this equation it becomes, 

d X
dt

k A e k Xk t[ ] [ ] [ ]= −−
1 0 2

1 . 

Using techniques of differential equations, this equation can be integrated to obtain, 

[ ] [ ] ( )X A k
k k

e ek t k t=
−

−− −0 1

2 1

1 2  
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 To find [Z] as a function of time, we need to turn to a concept called material balance.  

The concept is simply that the amount of matter in the system has to stay constant throughout the 

reaction.  Remember that at time zero, all of the matter in the system is in the form of A.  

Therefore, because of the stoichiometry, the total number of molecules in the system at any time 

must equal [A]0 as well, i.e.,  

[A] + [X] + [Z] = [A]0, or 

[Z] = [A]0 - [A] - [X]. 

Finally substituting our equations for [A] and [X] and simplifying yields 

[ ] [ ] ( ( ) ( ))Z A
k k

k e k ek t k t=
−

− − −− −0

2 1
2 11 11 2 . 

 It should be noted that for reactions with more complex stoichiometry, the materials 

balance equation would be more complicated. 

If we look at the time dependence of 

the concentration of each of the species, we 

see that [A] decays exponentially as shown 

earlier.  [X] shows a more complex behavior, 

growing in exponentially and then decaying 

as the rate of reaction 2 increases relative to 

reaction 1.  Finally, we have [Z] growing 

with a sigmoidal growth curve, with zero 

initial slope.  Note that since formation of X 

is necessary for formation of Z, the onset of Z formation is delayed. 

 Obtaining integrated rate equations even for this simple composite reaction was involved.  
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It would be useful to develop some tools that allow us to simplify the process of determining rate 

laws for complex equations.  One particularly important tool is the steady state approximation.  

It is applicable when a slow elementary reaction is immediately followed by a fast one.  For the 

sequential reaction we just studied, it would be useful for those cases where k2 >> k1. 

Let’s look at the evolution of the [X] under these circumstances.  When k2 >> k1, the 

second reaction, which consumes X, is much faster than the first, which produces it.  As a result, 

the [X] does not rise very far before it drops down again.  After a short time the [X] settles down 

to a small approximately constant level.  This is what we mean when we refer to the steady state.  

A wealth of experimental results has led to the following generalization:  “The rate of change of 

an intermediate can be approximately set to zero whenever it is formed slowly and consumed 

rapidly.” 

To see the power of the steady state approximation, let's return to the mechanism,  

1

1

k

k
A X

−

  

X Z
k
→

2

 

Our differential rate laws were 

− = − −
d A

dt
k A k X[ ] [ ] [ ]1 1  

d X
dt

k A k k X[ ] [ ] ( )[ ]= − +−1 1 2  

d Z
dt

k X[ ] [ ]= 2 . 

It is often useful to eliminate [X] from our equation for [Z], since the concentrations of 

intermediates often cannot be determined reliably, and since we wish to understand the effect of 



 
 

260 

reactant A, which we can control, on the rate of formation of Z.  We can eliminate [X] by using 

the steady state approximation.  In this case, if k k k d X
dt− + >> ≈1 2 1 0, [ ] .  The significance of this 

result is that under these conditions, we can easily express the [X] in terms of the [A], i.e., 

k A k k X1 1 2[ ] ( )[ ]= +−  

and  

[ ] [ ]X k A
k k

=
+−

1

1 2

. 

If we substitute this in our equations for [Z] and [A] we get, 

d Z
dt

k k
k k

A[ ] [ ]=
+−

2 1

1 2

 and − = −
+
−

−

d A
dt

k k
k k

A[ ] ( )[ ]1
1

1 2

1 . 

THE STEADY STATE APPROXIMATION IS APPLIED ONLY TO INTERMEDIATES AND NOT REACTANTS OR 

PRODUCTS.  WHY? 

 The steady state approximation is only one way of simplifying the job of writing rate 

laws of composite reactions.  Another reasonable question to ask, especially in a lengthy 

mechanism, is whether we need to consider all of the steps in a mechanism in working out the 

rate law. 

 Consider the following case.  In the reaction,  

H2(g) + Br2(g) ↔ 2HBr(g) 

The mechanism of the reaction has been proposed to be 

Br M Br M fast equilibrium
k

k

2
1

1

2+ ↔ +
−

 

Br H HBr H slow
k

+ → +2

2
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H Br HBr Br fast
k

+ → +2

3

 

In the second step of this sequence bromine atoms and H2 react slowly to form H atoms that are 

quickly consumed in the third step.  It should be apparent that the third step can’t proceed until 

the second step produces the H atoms, and that therefore the overall reaction can proceed no 

faster than reaction 2.  In such a case we call reaction 2 the rate-determining step, and the 

overall rate of the reaction is equal to the rate of step 2,  

v= k2[Br][H2]. 

As before we wish to express this rate law in terms only of reactants and products, and therefore 

we wish to eliminate [Br] from this equation.  This becomes easy because of the slowness of 

reaction two.  Since this implies that k2 << k-1, the opposing reactions come quickly to 

equilibrium, and [Br] is essentially independent of reaction 2.  Since the opposing reactions come 

quickly to equilibrium we can solve easily for [Br] in terms of [Br2] by writing an equilibrium 

expression for the opposing reactions, i.e.,  

K k
k

Br M
Br Mc = =

−

1

1

2

2

[ ] [ ]
[ ][ ]

 

which implies in turn that 

[ ] ( [ ]) /Br k
k

Br=
−

1

1
2

1 2  

and the overall reaction rate is given by 

v d HBr
dt

k k
k

Br H= =
−

1
2 2

1

1

1 2
2

1 2
2

[ ] ( ) [ ] [ ]/ / . 

So we see that a number of useful tools exist to simplify the process of determining rate laws for 

complex mechanisms. 
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 It is important to realize that the both the rate determining step and the steady state 

approximation are most typically used to help in the process of deducing the mechanism of a 

complex reaction from experimental kinetic measurements.  In most cases the way that the 

approximations are used is to suggest a mechanism based on all available information about the 

reaction, and then to use the approximations to see if the mechanism can correctly explain the 

experimental observations.  A good match between the observations and the predicted rate 

behavior validates the approximations, although in the case of the steady state approximation, 

direct detection of the intermediate is the best validation. 

 Detailed balance and microscopic reversibility, which we discussed earlier, have 

consequences for complex reactions.  As noted earlier, for an elementary reaction, the 

equilibrium constant must be the ratio of the rate constants in the forward and reverse directions.  

Thus, consider the process 

A B Y Z+ +  

in which the reactions in the forward and reverse directions are elementary.  The rates in the two 

directions are 

[ ][ ]1 1v k A B=  

and 

[ ][ ]1 1v k Y Z− −= . 

If the system is at equilibrium, these rates are equal; hence, 

[ ][ ]
[ ][ ]

1

1
c

eq

Y Zk K
k A B−

 
= =  
 

 

where Kc is the equilibrium constant. 
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 This argument can be extended to a reaction that occurs in two or more stages.  Consider, 

for example the reaction 

2 22 2H ICl I HCl+ + , 

which occurs in two steps.  At equilibrium the processes are occurring at equal rates in the 

forward and reverse directions: 

2(1) H ICl HI HCl+ +  

2(2) HI ICl HCl I+ +  

Thus at equilibrium,  

[ ][ ] [ ][ ]1 2 1k H ICl k HI HCl−=  

[ ][ ] [ ][ ]2 2 2k HI ICl k HCl I−= . 

The equilibrium constant for each reaction is thus 

[ ][ ]
[ ][ ]

1
1

1 2 eq

HI HClkK
k H ICl−

 
= =   

 
 

[ ][ ]
[ ][ ]

22
2

2 eq

HCl IkK
k HI ICl−

 
= =   

 
 

The product of these two equilibrium constants is  

[ ][ ]
[ ][ ]

2
21 2

1 2 2
1 2 2

c

eq

I HClk kK K K
k k H ICl− −

 
 = = =
 
 

 

where Kc is the equilibrium constant for the overall reaction.  For any mechanism, involving any 

number of elementary and consecutive steps, the overall equilibrium constant is the product of 

the equilibrium constants for the individual steps, and is the product of the rate constants for the 
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reactions in the forward direction divided by the product of those for the reverse reactions: 

1 2 3
1 2 3

1 2 3
c

k k kK K K K
k k k− − −

= =






 

 If a reaction occurs by a complex mechanism, and we measure a rate coefficient k1 for 

the overall reaction from left to right and also measure a rate coefficient k-1 for the overall 

reaction from right to left, at the same temperature, the ratio k1/k-1 is not necessarily the 

equilibrium constant for the overall reaction.  The reason is that the rate laws for composite 

reactions change with the experimental conditions, such as reactant concentrations, and the rate 

coefficients also change.  The ratio of the rate coefficients k1 and k-1 that apply when the system 

is at equilibrium is equal to the equilibrium constant, but rate coefficients determined away from 

equilibrium are not necessarily the same as those at equilibrium, and their ratio is not necessarily 

equal to Kc.  Therefore, great caution should be used in deducing rate coefficients and rate laws 

for reactions from the equilibrium constant and the rate coefficient for the reverse reaction. 

 As an example of a situation where the ratio of the rate constants is not the equilibrium 

constant, consider the reaction system 

1 2

1 2
A X Z

− −
 

 

 

If the system is at complete equilibrium, 

[ ]
[ ]

1

1eq

X k
A k−

 
=  

 
, 

[ ]
[ ]

2

2eq

Z k
X k−

 
=  

 
 

and  
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[ ]
[ ]

1 2

1 2
c

eq

Z k k K
A k k− −

 
= =  

 
 

If one makes measurements of the rate of consumption of A at the very beginning of the reaction, 

before any X and Z have accumulated,  

[ ] [ ]1

d A
k A

dt
− =  

and the first-order rate constant is k1.  Similarly, if one starts with pur Z and measures initial 

rates of consumption of Z, the rate constant obtained is k-2.  In general, the ratio k1/k-2 is not 

equal to the equilibrium constant Kc. 


